Table of Contents
This tutorial provides a complete, step-by-step derivation of the Lorentz force law starting from the Lagrangian. The tutorial includes the derivation of key vector identities and explicitly details each term involved in the process. The goal is to make the content understandable even for someone new to the subject.
Step 1: Define the Lagrangian 
The Lagrangian
is a function that describes the dynamics of a system. For a charged particle of mass
and charge
moving in electromagnetic fields described by a vector potential
and a scalar potential
, the Lagrangian
is defined as:
![Rendered by QuickLaTeX.com \[L = \frac{1}{2}m\vec{\dot{x}} \cdot \vec{\dot{x}} + q\vec{\dot{x}} \cdot \vec{A} - q\phi\]](https://blog.lazying.art/wp-content/ql-cache/quicklatex.com-e9396de65a98254e91385848e55648b1_l3.png)
Here,
is the velocity of the particle, and the dot represents a time derivative.
Step 2: Compute 
To proceed, we need to find the partial derivative of
with respect to
. This derivative is obtained as follows:
![Rendered by QuickLaTeX.com \[\frac{\partial L}{\partial \vec{\dot{x}}} = m\vec{\dot{x}} + q\vec{A}\]](https://blog.lazying.art/wp-content/ql-cache/quicklatex.com-58d404ab61cd18605f83527d338390cd_l3.png)
Step 3: Derive the Vector Identity
Before diving into the next steps, let’s derive a key vector identity that will be used later. The identity is:
![]()
The derivation of this identity involves using the definitions of gradient, divergence, and curl, along with the product rule for derivatives. Due to its complexity, it’s typically proven using tensor notation or by working through each Cartesian component.
Step 4: Compute
with Explicit Derivation of Terms
Now, we’ll find the partial derivative of
with respect to
. This involves differentiating the terms
and
.
Derivation of the
Term
The
term differentiates to
when taking the gradient with respect to
.
Derivation of the Last Two Terms from 
Using the vector identity derived in Step 3, the gradient of
becomes:
![]()
These two terms will be part of
.
Final Expression for 
Combining these terms, we get:
![Rendered by QuickLaTeX.com \[\frac{\partial L}{\partial \vec{x}} = -q \nabla \phi + q (\vec{\dot{x}} \cdot \nabla) \vec{A} + q \vec{\dot{x}} \times (\nabla \times \vec{A})\]](https://blog.lazying.art/wp-content/ql-cache/quicklatex.com-44bdbf54ec426d8247d930c329989931_l3.png)
Step 5: Euler-Lagrange Equation and Time Derivative
The Euler-Lagrange equation states:
![Rendered by QuickLaTeX.com \[\frac{d}{dt} \left( \frac{\partial L}{\partial \vec{\dot{x}}} \right) - \frac{\partial L}{\partial \vec{x}} = 0\]](https://blog.lazying.art/wp-content/ql-cache/quicklatex.com-65f99217d2b0cf7ea83a39dab1aba883_l3.png)
To apply this equation, we need to find the time derivative of
, which is:
![Rendered by QuickLaTeX.com \[\frac{d}{dt}(m\vec{\dot{x}} + q\vec{A}) = m\vec{\ddot{x}} + q\frac{d\vec{A}}{dt}\]](https://blog.lazying.art/wp-content/ql-cache/quicklatex.com-d82a9cfd955077ddff543c543fb2cd50_l3.png)
The total time derivative
includes both explicit and implicit time dependencies:
![Rendered by QuickLaTeX.com \[\frac{d\vec{A}}{dt} = \frac{\partial \vec{A}}{\partial t} + (\vec{\dot{x}} \cdot \nabla) \vec{A}\]](https://blog.lazying.art/wp-content/ql-cache/quicklatex.com-47061b41ef4d1862490e3d7653b4e70b_l3.png)
Step 6: Substitute into Euler-Lagrange Equation and Simplify
Having all the necessary derivatives and expressions at hand, we can now substitute these into the Euler-Lagrange equation:
![Rendered by QuickLaTeX.com \[\frac{d}{dt} \left( \frac{\partial L}{\partial \vec{\dot{x}}} \right) - \frac{\partial L}{\partial \vec{x}} = 0\]](https://blog.lazying.art/wp-content/ql-cache/quicklatex.com-65f99217d2b0cf7ea83a39dab1aba883_l3.png)
We had:
![Rendered by QuickLaTeX.com \[\frac{d}{dt}(m\vec{\dot{x}} + q\vec{A}) = m\vec{\ddot{x}} + q \left( \frac{\partial \vec{A}}{\partial t} + (\vec{\dot{x}} \cdot \nabla) \vec{A} \right)\]](https://blog.lazying.art/wp-content/ql-cache/quicklatex.com-b157b19eb8dae7239f2b28a4961c4eb4_l3.png)
And:
![Rendered by QuickLaTeX.com \[\frac{\partial L}{\partial \vec{x}} = -q \nabla \phi + q (\vec{\dot{x}} \cdot \nabla) \vec{A} + q \vec{\dot{x}} \times (\nabla \times \vec{A})\]](https://blog.lazying.art/wp-content/ql-cache/quicklatex.com-44bdbf54ec426d8247d930c329989931_l3.png)
Substituting these into the Euler-Lagrange equation, we get:
![Rendered by QuickLaTeX.com \[m\vec{\ddot{x}} + q \left( \frac{\partial \vec{A}}{\partial t} + (\vec{\dot{x}} \cdot \nabla) \vec{A} \right) = q \left( -\nabla \phi + (\vec{\dot{x}} \cdot \nabla) \vec{A} + \vec{\dot{x}} \times (\nabla \times \vec{A}) \right)\]](https://blog.lazying.art/wp-content/ql-cache/quicklatex.com-4e5928da693190ae39b41e212cae78f0_l3.png)
Simplifying, we find:
![Rendered by QuickLaTeX.com \[m\vec{\ddot{x}} = q \left( -\nabla \phi - \frac{\partial \vec{A}}{\partial t} \right) + q \vec{\dot{x}} \times (\nabla \times \vec{A})\]](https://blog.lazying.art/wp-content/ql-cache/quicklatex.com-d489e2907686246bda8efcef65e5f991_l3.png)
Finally, using
and
, we arrive at the Lorentz force law:
![]()
Conclusion
This concludes the comprehensive tutorial on deriving the Lorentz force law from the Lagrangian. The tutorial aimed to be as detailed as possible, explicitly showing the derivation of each term and equation involved. I hope you find this tutorial complete and informative.
SI
Derivation Using Limits
The Definition of the Total Derivative
The total derivative
of a vector field
is defined by the limit:
![Rendered by QuickLaTeX.com \[\frac{d\vec{A}}{dt} = \lim_{{\Delta t \to 0}} \frac{\vec{A}(t + \Delta t, \vec{x}(t + \Delta t)) - \vec{A}(t, \vec{x}(t))}{\Delta t}\]](https://blog.lazying.art/wp-content/ql-cache/quicklatex.com-ad6176c7ba7424c04ffd2d541c0e35c7_l3.png)
Breaking Down the Limit Expression
We can express
using a Taylor series expansion around
:
![Rendered by QuickLaTeX.com \[\vec{A}(t + \Delta t, \vec{x}(t + \Delta t)) \approx \vec{A}(t, \vec{x}(t)) + \Delta t \left( \frac{\partial \vec{A}}{\partial t} \right)_{\vec{x}(t)} + \Delta \vec{x} \cdot \left( \nabla \vec{A} \right)_{\vec{x}(t)}\]](https://blog.lazying.art/wp-content/ql-cache/quicklatex.com-50dd44c1d36cb74d3fd647f02d683b07_l3.png)
where
.
Factor Out 
Now, we can substitute this expansion back into the limit expression for
:
![Rendered by QuickLaTeX.com \[\frac{d\vec{A}}{dt} = \lim_{{\Delta t \to 0}} \frac{ \vec{A}(t, \vec{x}(t)) + \Delta t \left( \frac{\partial \vec{A}}{\partial t} \right)_{\vec{x}(t)} + \Delta \vec{x} \cdot \left( \nabla \vec{A} \right)_{\vec{x}(t)} - \vec{A}(t, \vec{x}(t))}{\Delta t}\]](https://blog.lazying.art/wp-content/ql-cache/quicklatex.com-80729453a63cf369e8e4c5ed24cc5a00_l3.png)
Factoring out
in the numerator, we get:
![Rendered by QuickLaTeX.com \[\frac{d\vec{A}}{dt} = \lim_{{\Delta t \to 0}} \left( \frac{\partial \vec{A}}{\partial t} \right)_{\vec{x}(t)} + \frac{\Delta \vec{x}}{\Delta t} \cdot \left( \nabla \vec{A} \right)_{\vec{x}(t)}\]](https://blog.lazying.art/wp-content/ql-cache/quicklatex.com-f6e5ae7a745cf1d79d273dab8e1919dc_l3.png)
Taking the Limit
As
approaches zero,
approaches
, the velocity of the particle. So, we have:
![Rendered by QuickLaTeX.com \[\frac{d\vec{A}}{dt} = \left( \frac{\partial \vec{A}}{\partial t} \right) + \vec{\dot{x}} \cdot \nabla \vec{A}\]](https://blog.lazying.art/wp-content/ql-cache/quicklatex.com-7d141f62d0c2a417a6808d6dddf1c04b_l3.png)
This gives us the expression for the total time derivative
, which includes both the explicit and implicit time dependencies.
Certainly, demonstrating the vector identity through a concrete 3D example can offer a tangible way to grasp its intricacies. The vector identity we’re interested in is:
![]()
For simplicity, let’s consider
and
as 3D vectors defined in Cartesian coordinates
:
![]()
![]()
Tutorial: Verifying the Vector Identity in 3D
Step 1: Compute 
The dot product
is given by:
![]()
Step 2: Compute 
The gradient of
with respect to
is:
![Rendered by QuickLaTeX.com \[\nabla (\vec{U} \cdot \vec{V}) = \left( \frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z} \right) \cdot (U_x V_x + U_y V_y + U_z V_z)\]](https://blog.lazying.art/wp-content/ql-cache/quicklatex.com-0a92e1ab8b7df5e78042fa904ecadca8_l3.png)
This results in a vector with components:
![Rendered by QuickLaTeX.com \[\left( \frac{\partial}{\partial x}(U_x V_x) + \frac{\partial}{\partial y}(U_y V_y) + \frac{\partial}{\partial z}(U_z V_z) \right) \hat{i} + \text{(similar terms for } \hat{j} \text{ and } \hat{k} \text{)}\]](https://blog.lazying.art/wp-content/ql-cache/quicklatex.com-585e81a99cf5bda2db34a87b75fbe60e_l3.png)
Step 3: Compute
and 
The term
can be written as:
![Rendered by QuickLaTeX.com \[(U_x \frac{\partial}{\partial x} + U_y \frac{\partial}{\partial y} + U_z \frac{\partial}{\partial z}) \cdot (V_x \hat{i} + V_y \hat{j} + V_z \hat{k})\]](https://blog.lazying.art/wp-content/ql-cache/quicklatex.com-e7cdf8c1d3ce6257313a4f7d5612ef9e_l3.png)
After performing the dot product, we get:
![Rendered by QuickLaTeX.com \[U_x \frac{\partial V_x}{\partial x} \hat{i} + U_y \frac{\partial V_y}{\partial y} \hat{j} + U_z \frac{\partial V_z}{\partial z} \hat{k}\]](https://blog.lazying.art/wp-content/ql-cache/quicklatex.com-6c246a0a4729c0476942911c98651b8d_l3.png)
A similar calculation can be done for
.
Step 4: Compute
and 
Computing the curl
and
yields vectors in
components. The cross product
